Hyperbolic random graphs share many common properties with complex real-world networks; e.g., small diameter and average distance, large clustering coefficient, and a power-law degree sequence with adjustable exponent beta. Thus, when analyzing algorithms for large networks, potentially more realistic results can be achieved by assuming the input to be a hyperbolic random graph of size n. The worst-case run-time is then replaced by the expected run-time or by bounds that hold with high probability (whp), i.e., with probability 1-O(1/n). Though many structural properties of hyperbolic random graphs have been studied, almost no algorithmic results are known. Divide-and-conquer is an important algorithmic design principle that works particu...