We discuss several notions of "simple" winning strategies for Banach-Mazur games on graphs, such as positional strategies, move-counting or length-counting strategies, and strategies with a memory based on finite appearance records (FAR). We investigate classes of Banach-Mazur games that are determined via these kinds of winning strategies. Banach-Mazur games admit stronger determinacy results than classical graph games. For instance, all Banach-Mazur games with omega-regular winning conditions are positionally determined. Beyond the omega-regular winning conditions, we focus here on Muller conditions with infinitely many colours. We investigate the infinitary Muller conditions that guarantee positional determinacy for Banach-Mazur games....