Let $A$ be a given $n$-by-$n$ complex matrix with eigenvalues $lambda ,lambda _{2},ldots ,lambda _{n}$. Suppose there are nonzero vectors $% x,yin mathbb{C}^{n}$ such that $Ax=lambda x$, $y^{ast }A=lambda y^{ast }$, and $y^{ast }x=1$. Let $vin mathbb{C}^{n}$ be such that $v^{ast }x=1$% , let $cin mathbb{C}$, and assume that $lambda eq clambda _{j}$ for each $j=2,ldots ,n$. Define $A(c):=cA+(1-c)lambda xv^{ast }$. The eigenvalues of $% A(c)$ are $lambda ,clambda _{2},ldots ,clambda _{n}$. Every left eigenvector of $A(c)$ corresponding to $lambda $ is a scalar multiple of $% y-z(c)$, in which the vector $z(c)$ is an explicit rational function of $c$. If a standard form such as the Jordan canonical form or the Schur triangular form is known f...