On-line algorithms are usually analyzed using competitive analysis, in which the performance of on-line algorithm on a sequence is normalized by the performance of the optimal on-line algorithm on that sequence. In this paper we introduce adaptive/cooperative analysis as an alternative general framework for the analysis of on-line algorithms. This model gives promising results when applied to two well known on-line problems, paging and list update. The idea is to normalize the performance of an on-line algorithm by a measure other than the performance of the on-line optimal algorithm OPT. We show that in many instances the perform of OPT on a sequence is a coarse approximation of the difficulty or complexity of a given input. Using a finer,...