In this paper, a performance limit is derived for a distributed Bayesian parameter estimation problem in sensor networks where the prior probability density function of the parameter is known. The sensor observations are assumed conditionally independent and identically distributed given the parameter to be estimated, and the sensors employ independent and identical quantizers. The performance limit is established in terms of the best possible asymptotic performance that a distributed estimation scheme can achieve for all possible sensor observation models. This performance limit is obtained by deriving the optimal probabilistic quantizer under the ideal setting, where the sensors observe the parameter directly without any noise or distorti...