We exhibit a relationship between projective duality and the sheaf of logarithmic vector fields along a reduced divisor D of projective space, in that the push-forward of the ideal sheaf of the conormal variety in the point-hyperplane incidence, twisted by the tautological ample line bundle is isomorphic to logarithmic differentials along D. Then we focus on the adjoint discriminant D of a simple Lie group with Lie algebra g over an algebraically closed field k of characteristic zero and study the logarithmic module Der_U(-log(D)) over U = k[g]. When g is simply laced, we show that this module has two direct summands: the G-invariant part, which is free with generators in degrees equal to the exponents of G, and the G-variant part, which is...
In the first part we deepen the six-functor theory of (holonomic) logarithmic D-modules, in particul...
: We realize an idea suggested in the literature by Yuzvinsky, giving a construction of logarithmic ...
Let OX (resp. DX) be the sheaf of holomorphic functions (resp. the sheaf of linear differential ope...
Rapporteurs : Francesco Baldassarri (Padoue, Italie) et Luc Illusie (Orsay, France). Membres du jury...
The theory of logarithmic vector fields and logarithmic differential forms along a reduced singular ...
The theory of logarithmic vector fields and logarithmic differential forms along a reduced singular ...
Abstract. A complex hypersurface D in Cn is a linear free divisor (LFD) if its module of logarithmic...
A complex hypersurface D in C^n is a linear free divisor (LFD) if its module of logarithmic vector f...
A complex hypersurface D in C-n is a linear free divisor (LFD) if its module of logarithmic vector f...
In this thesis, we first introduce logarithmic Picard algebroids, a natural class of Lie algebroids ...
Abstract. We study divisors in a complex manifold in view of the property that the algebra of logari...
In this thesis, we first introduce logarithmic Picard algebroids, a natural class of Lie algebroids ...
We prove a structure theorem for differential operators in the 0-th term of the V-filtration relativ...
Building upon recent work by Binda, Park, and Østvær we construct a theory of motives with compact s...
A complex hypersurface D in ℂ n is a linear free divisor (LFD) if its module of logarithmic vector f...
In the first part we deepen the six-functor theory of (holonomic) logarithmic D-modules, in particul...
: We realize an idea suggested in the literature by Yuzvinsky, giving a construction of logarithmic ...
Let OX (resp. DX) be the sheaf of holomorphic functions (resp. the sheaf of linear differential ope...
Rapporteurs : Francesco Baldassarri (Padoue, Italie) et Luc Illusie (Orsay, France). Membres du jury...
The theory of logarithmic vector fields and logarithmic differential forms along a reduced singular ...
The theory of logarithmic vector fields and logarithmic differential forms along a reduced singular ...
Abstract. A complex hypersurface D in Cn is a linear free divisor (LFD) if its module of logarithmic...
A complex hypersurface D in C^n is a linear free divisor (LFD) if its module of logarithmic vector f...
A complex hypersurface D in C-n is a linear free divisor (LFD) if its module of logarithmic vector f...
In this thesis, we first introduce logarithmic Picard algebroids, a natural class of Lie algebroids ...
Abstract. We study divisors in a complex manifold in view of the property that the algebra of logari...
In this thesis, we first introduce logarithmic Picard algebroids, a natural class of Lie algebroids ...
We prove a structure theorem for differential operators in the 0-th term of the V-filtration relativ...
Building upon recent work by Binda, Park, and Østvær we construct a theory of motives with compact s...
A complex hypersurface D in ℂ n is a linear free divisor (LFD) if its module of logarithmic vector f...
In the first part we deepen the six-functor theory of (holonomic) logarithmic D-modules, in particul...
: We realize an idea suggested in the literature by Yuzvinsky, giving a construction of logarithmic ...
Let OX (resp. DX) be the sheaf of holomorphic functions (resp. the sheaf of linear differential ope...