Using the H-infinity-functional calculus for quaternionic operators, we show how to generate the fractional powers of some densely defined differential quaternionic operators of order m >= 1, acting on the right linear quaternionic Hilbert space L-2 (Omega, C circle times H). The operators that we consider are of the typeT = i(m-1) (alpha(1)(x)e(1) partial derivative(m)(x1) + alpha(2)(x)e(2)partial derivative(m)(x2) + alpha(3)(x)e(3)partial derivative(m)(x3)), x =(x(1), x(2), x(3)) is an element of (Omega) over bar,where (Omega) over bar is the closure of either a bounded domain Omega with C-1 boundary, or an unbounded domain n in R-3 with a sufficiently regular boundary, which satisfy the so-called property (R) (see Definition 1.3), e(1...