We consider a boundary value problem in weak form of a steady-state Riesz space-fractional diffusion equation (FDE) of order 2 - alpha with 0 < alpha < 1. By using a finite volume approximation technique on uniform grids, we obtain a large linear system, whose coefficient matrix can be viewed as the sum of diagonal matrices times dense Toeplitz matrices. We study in detail the hidden nature of the resulting sequence of coefficient matrices, and we show that they fall in the class of generalized locally Toeplitz (GLT) sequences. The associated GLT symbol is obtained as the sum of products of functions, involving the Wiener generating functions of the Toeplitz components and the diffusion coefficients of the considered FDE. By exploitin...