We investigate the collapse and fragmentation of low-mass, trans-sonically turbulent pre-stellar cores, using smoothed particle hydrodynamics simulations. The initial conditions are slightly supercritical Bonnor–Ebert spheres, all with the same density profile, the same mass (MO= 6.1 M⊙) and the same radius (RO= 17 000 au), but having different initial turbulent velocity fields. 400 turbulent velocity fields have been generated, all scaled so that the mean Mach number is . Then, a subset of these (in total 11 setups), having a range of net angular momenta, j, has been evolved. The evolution of these turbulent cores is significantly different from the collapse of a rigidly rotating core. It is not strongly correlated with j. Instead, it is m...