The overall objective this work is to contribute to the understanding of how the precise structure of the corneal stroma is achieved during development, and to apply this knowledge to the latest attempts at engineering effective stromal constructs for use in transplantation. The cornea is the major refractive element of the human eye, accounting for two-thirds of total focusing power. Representing around 85% of corneal thickness, the stroma possesses the mechanical strength needed to protect intraocular tissues, whilst still achieving the high level of transparency necessary for light transmission. This is chiefly due to the small, uniform diameter collagen fibrils arranged into a precisely ordered series of orthogonal lamellae. Proteogl...