In this paper, we analyze a two-queue random time-limited Markov-modulated polling model. In the first part of the paper, we investigate the fluid version: fluid arrives at the two queues as two independent flows with deterministic rate. There is a single server that serves both queues at constant speeds. The server spends an exponentially distributed amount of time in each queue. After the completion of such a visit time to one queue, the server instantly switches to the other queue, i.e., there is no switch-over time. For this model, we first derive the Laplace-Stieltjes transform (LST) of the stationary marginal fluid content/workload at each queue. Subsequently, we derive a functional equation for the LST of the two-dimensional workload...