With large scale and complex configurable systems, it is hard for users to choose the right combination of options (i.e., configurations) in order to obtain the wanted trade-off between functionality and performance goals such as speed or size. Machine learning can help in relating these goals to the configurable system options, and thus, predict the effect of options on the outcome, typically after a costly training step. However, many configurable systems evolve at such a rapid pace that it is impractical to retrain a new model from scratch for each new version. Taking the extreme case of the Linux kernel with its ≈ 14, 500 configuration options, we investigate how binary size predictions of kernel size degrade over successive versions (a...