Linux kernels are used in a wide variety of appliances, many of them having strong requirements on the kernel size due to constraints such as limited memory or instant boot. With more than ten thousands of configuration options to choose from, obtaining a suitable trade off between kernel size and functionality is an extremely hard problem. Developers, contributors, and users actually spend significant effort to document, understand, and eventually tune (combinations of) options for meeting a kernel size. In this paper, we investigate how machine learning can help explain what matters for predicting a given Linux kernel size. Unveiling what matters in such very large configuration space is challenging for two reasons: (1) whatever the time ...