Here we discuss the effect of topology on the quantum Hall effect taking into account the direct Coulomb interactions, considering two distinct geometries, namely the Hall bar and the Corbino disc. The consequences of interactions are underestimated in the standard approaches to explain the quantized Hall effect. However, the local distributions of the electron number density, the electrochemical potential, and current distributions depend on electron–electron interactions. Accounting for the direct Coulomb interaction and realistic boundary conditions results in local variations of compressibility—namely metal-like compressible and (topological) insulator-like incompressible regions. Within the framework of the screening theory, we show in...