We investigate some computational aspects of an innovative class of PDE-regularized statistical models: Spatial Regression with Partial Differential Equation regularization (SR-PDE). These physics-informed regression methods can account for the physics of the underlying phenomena and handle data observed over spatial domains with nontrivial shapes, such as domains with concavities and holes or curved domains. The computational bottleneck in SR-PDE estimation is the solution of a computationally demanding linear system involving a low-rank but dense block. We address this aspect by innovatively using Sherman–Morrison–Woodbury identity. We also investigate the efficient selection of the smoothing parameter in SR-PDE estimates. Specifically, w...