Synthesis of a large set of high-quality medical images with variability in anatomical representation and image appearance has the potential to provide solutions for tackling the scarcity of properly annotated data in medical image analysis research. In this paper, we propose a novel framework consisting of image segmentation and synthesis based on mask-conditional GANs for generating high-fidelity and diverse Cardiac Magnetic Resonance (CMR) images. The framework consists of two modules: i) a segmentation module trained using a physics-based simulated database of CMR images to provide multi-tissue labels on real CMR images, and ii) a synthesis module trained using pairs of real CMR images and corresponding multi-tissue labels, to translate...