Abstract: A mathematical model based on a generalized Maxwell–Stefan equation has been developed to describe multicomponent ion and water transport inside a cation-exchange membrane. This model has been validated using experimental data and has been used to predict concentration profiles, membrane potential drop, and transport numbers of ions and water for the chlor-alkali process at increased current densities. Several improvements have been made to previously developed Maxwell–Stefan models. In our model, the generalized Maxwell–Stefan equation is written in terms of concentration instead of mole fraction and the fixed group (membrane) concentration is assumed to be constant. We have adapted the Augmented matrix method using the built-in ...