The effect of helium (He) plasma exposure, and associated surface modifications, on the thermal shock resistance of tungsten (W) under ITER relevant steady state and transient heat and particle loads was studied. W samples were exposed to steady state and pulsed He plasmas at surface base temperatures from 670 to 1170 K. The same exposures were repeated in hydrogen (H) to allow a direct comparison of the role of the ion species on the thermal shock resistance. Exposure to He plasma pulses caused the formation of fine cracking network on W samples which occurred at a higher density and smaller depths compared to H pulsed plasma irradiation. The peak temperature reached during an ELM-like plasma pulse increased by a factor ∼1.45 over the 100 ...