Mining local patterns of process behavior is a vital tool for the analysis of event data that originates from flexible processes, for which it is generally not possible to describe the behavior of the process in a single process model without overgeneralizing the behavior allowed by the process. Several techniques for mining such local patterns have been developed throughout the years, including Local Process Model (LPM) mining and the hierarchical mining of frequent subtraces (i.e., subprocesses). These two techniques can be considered to be orthogonal, i.e., they provide different types of insights on the behavior observed in an event log. As a consequence, it is often useful to apply both techniques to the data. However, both techniques ...