We derive a kinetic theory of granular flow (KTGF) for frictional spheres in dense systems, including rotation, sliding and sticking collisions. We use the Chapman-Enskog solution procedure of successive approximations, where the single-particle velocity distribution is assumed to be nearly Maxwellian both translationally and rotationally, as assumed by McCoy et al. (1966). An expression for the first-order particle velocity distribution function is derived, which includes the effects of particle rotation and friction. Using a simple moment method, balance equations for mass, momentum and energy are derived with closure equations for viscosities, and thermal conductivities and collisional energy dissipation rates of angular and translationa...