The subject of this paper is the development of a nonlinearparametric identification method using chaotic data. In former research, the main problem in using chaotic data in parameter estimation appeared to be the numerical computation of the chaotic trajectories. This computational problem is due to the highly unstable character of the chaotic orbits. The method proposed in this paper is based on assumed physical models and has two important components. Firstly, the chaotic time series is characterized by a `skeleton' of unstable periodic orbits. Secondly, these unstable periodic orbits are used as the input information for a nonlinear parametric identification method using periodic data. As a consequence, problems concerning the numerical...
Certain deterministic non-linear systems may show chaotic behaviour. Time series derived from such s...
In nonlinear dynamical systems the determination of stable and unstable periodic orbits as part of p...
This paper introduces a new rationale for learning nonlinear dynamical systems. The method makes use...
The subject of this paper is the development of a nonlinearparametric identification method using ch...
The thesis mainly focuses on the problem of nonlinear dynamical system identification from observed ...
Abstract: Parameters are identified in chaotic systems. Periodic orbits are first extracted from a c...
Limited literature regarding parameter estimation of dynamic systems has been identified as the cent...
Chaotic systems have been widely investigated during the past couple of decades. Specially, fractal ...
This contribution discusses dynamic reconstructions and their application to the identification of, ...
The matter concerning special criteria definition for nonlinear dynamic systems identification probl...
Many novel chaotic systems have recently been identified and numerically studied. Parametric chaotic...
Parametric identification of a single degree-of-freedom (SDOF) nonlinear Duffing oscillator is carri...
This paper investigates the identification of global models from chaotic data corrupted by purely ad...
Certain deterministic non-linear systems may show chaotic behaviour. Time series derived from such s...
This paper talk addresses a new signal processing method for detecting chaos in time series. This pr...
Certain deterministic non-linear systems may show chaotic behaviour. Time series derived from such s...
In nonlinear dynamical systems the determination of stable and unstable periodic orbits as part of p...
This paper introduces a new rationale for learning nonlinear dynamical systems. The method makes use...
The subject of this paper is the development of a nonlinearparametric identification method using ch...
The thesis mainly focuses on the problem of nonlinear dynamical system identification from observed ...
Abstract: Parameters are identified in chaotic systems. Periodic orbits are first extracted from a c...
Limited literature regarding parameter estimation of dynamic systems has been identified as the cent...
Chaotic systems have been widely investigated during the past couple of decades. Specially, fractal ...
This contribution discusses dynamic reconstructions and their application to the identification of, ...
The matter concerning special criteria definition for nonlinear dynamic systems identification probl...
Many novel chaotic systems have recently been identified and numerically studied. Parametric chaotic...
Parametric identification of a single degree-of-freedom (SDOF) nonlinear Duffing oscillator is carri...
This paper investigates the identification of global models from chaotic data corrupted by purely ad...
Certain deterministic non-linear systems may show chaotic behaviour. Time series derived from such s...
This paper talk addresses a new signal processing method for detecting chaos in time series. This pr...
Certain deterministic non-linear systems may show chaotic behaviour. Time series derived from such s...
In nonlinear dynamical systems the determination of stable and unstable periodic orbits as part of p...
This paper introduces a new rationale for learning nonlinear dynamical systems. The method makes use...