BACKGROUND AND OBJECTIVE: Over the past decade, convolutional neural networks (CNNs) have revolutionized the field of medical image segmentation. Prompted by the developments in computational resources and the availability of large datasets, a wide variety of different two-dimensional (2D) and three-dimensional (3D) CNN training strategies have been proposed. However, a systematic comparison of the impact of these strategies on the image segmentation performance is still lacking. Therefore, this study aimed to compare eight different CNN training strategies, namely 2D (axial, sagittal and coronal slices), 2.5D (3 and 5 adjacent slices), majority voting, randomly oriented 2D cross-sections and 3D patches.METHODS: These eight strategies were ...