In-vitro fertilization (IVF) is the most advanced treatment for infertility problems; however, its failure rate is still above 70% and the exact causes are often unknown. There is increasing evidence of the involvement of uterine contractions in IVF failure, especially during and after embryo transfer (ET). In this paper, we propose a new method to predict the success of IVF based on quantitative features extracted from electrohysterography (EHG) and B-mode transvaginal ultrasound (TVUS) recordings. To this end, probabilistic classification of the uterine activity, as either favorable or adverse to embryo implantation, is investigated using machine learning. Prior to machine learning, an additional method for EHG and TVUS feature extraction...