An approach is proposed to create robust liquid crystalline polymer coatings that exhibit sensitivity and dynamic reversibility toward multiple external stimuli including UV irradiation and electrical input. This coating spontaneously alters its surface topographic texture and thickness in response to each of these signals. The corresponding deformations are induced by the photo-/electromechanical properties and dielectric anisotropy in the liquid crystal networks through order parameter reduction and anisotropic volume expansions. The deformation proceeds fast within several seconds both for activation and for the relaxation to the initial state upon switching the trigger(s) on and off. Light and electric field can be applied independently...