Diese Dissertation präsentiert neue Ergebnisse sowohl in der reellen algebraischen Geometrie als auch in der Polyedertheorie. Das Hauptresultat ist der konstruktive Beweis, dass jedes d-dimensionale Polyeder durch höchstens 2d Polynomungleichungen beschreibbar ist. Für die entsprechenden Polynome wird ein Konstruktionsalgorithmus explizit angegeben. Als Folge ergeben sich: Jeder d-dimensionale polyedrische Kegel kann durch 2d-2 Polynomungleichungen beschrieben werden, und jedes beschränkte, d-dimensionale Polytop kann durch 2d-1 Polynomungleichungen beschrieben werden. Für beide Fälle liefert die Arbeit entsprechende Konstruktionsalgorithmen. In jedem der Fälle ist die Anzahl der konstruierten Polynome nah an der untereren Schranke: Um ein ...