Time-resolved quantum cascade laser absorption spectroscopy at 1897 cm-1 (5.27 µm) has been applied to study the NO(X) kinetics on the micro- and millisecond time scale in pulsed low-pressure N2/NO dc discharges. Experiments have been performed under flowing and static gas conditions to infer the gas temperature increase and the consequences for the NO line strength. A relatively small increase of ~20 K is observed during the early plasma phase of a few milliseconds. After some 10 ms gas temperatures up to 500 K can be deduced. The experimental data for the NO mixing ratio were compared with the results from a recently developed time-dependent model for pulsed N2–O2 plasmas which are well in accord. The early plasma pulse is determined by v...