In a pulsed dc discharge of an Ar–N2 mixture containing 0.91% of NO the kinetics of the destruction of NO has been studied under static and flowing conditions, i.e. in a closed and open discharge tube (p = 266 Pa). For this purpose quantum cascade laser absorption spectroscopy (QCLAS) in the infrared spectral range has been applied as a new approach for fast in situ plasma diagnostics which is capable of achieving a time resolution below 100 ns. The time decay of the NO concentration was measured in single discharge pulses of 1 ms duration. Additionally, the temporal behaviour of the electric field and the applied power was followed during the pulse. The comparison of the time evolution of the NO concentration under static and flowing condi...