A constitutive formulation for finite deformation of porous solids, including an hierarchical arrangement of the pores is presented. An extended Darcy equation is derived by means of a formal averaging procedure. The procedure transforms the discrete network of pores into a continuum, without sacrificing essential information about orderly intercommunication of the pores. The distinction between different hierarchical levels of pores is achieved by means of a hierarchical parameter. The macroscopic equations are derived assuming that the pores are a network of cylindrical vessels in which Poiseuille-type pressure-flow relations are valid. The relationships between stress, strain, strain rate, fluid volume fraction, fluid volume fraction rat...