The use of soft materials to transmit power to the human body has numerous advantages, amongst which safety and kinematic transparency stand out. In previous work we showed that a tethered fabric-based exosuit for the elbow joint, driven by an electric motor through a Bowden cable transmission, reduces the muscular effort associated with flexion movements by working in parallel with its wearer's muscles. We herein propose a refined design of the suit and present an untethered control architecture for gravity compensation and motion-intention detection. The architecture comprises four interconnected modules for power management, low-level motor control and high-level signal processing and data streaming. The controller uses a silicone stretc...