Diplomová práce se zaměřuje na problematiku detekce objektů. Je navržen experiment, který posuzuje detekční modely YOLOv5, YOLOR, Scaled-YOLOv4 a EfficientDet a po- rovnává jejich vlastnosti (rychlost detekce, pamětové nároky, přesnost a jistotu detekce). K tomuto účelu je vytvořena vlastní datová sada, na které jsou tyto parametry zkoumány. Ze studie vyplývá, že nejlépe je na tom síť YOLOv5. Pro trasování objektů je použit deep SORT, který je důležitý pro následné získání trénovacích dat z videozáznamu pro predikci pohybu objektů. Přidanou hodnotou je návrh predikčního algoritmu, který je založený na polynomiálním regresním modelu.The master‘s thesis is focused on the object detection. The aim of this thesis is to desine an experiment to a...