Diplomová práce se věnuje klasifikaci kolejových vozidel na základě obrazové informace. V práci jsou teoreticky popsány a následně realizovány dva přístupy ke klasifikaci kolejových vozidel. Prvním přístupem je transformace snímků na histogramy vizuálních slov ze slovníku podle metody Bag of Visual Words a následná aplikace klasických klasifikátorů typu k-NN, SVM, Multinomial Naive Bayes, neuronová síť a Ensemble metoda typu voting classifiers. Druhým přístupem je klasifikace snímků pomocí ověřených architektur konvolučních neuronových sítí využitím metody transfer learning. Sítě AlexNet, VGG16 a ResNet50 byly předtrénovány na obsáhlém datasetu ImageNet a horní vrstvy byly dotrénovány na vlastním datasetu kolejových vozidel. Oba přístupy by...