Anomaly detection is the identification of events or observations that deviate from the expected behaviour of a given set of data. Its main application is the prediction of possible technical failures. In particular, anomaly detection on supercomputers is a difficult problem to solve due to the large scale of the systems and the large number of components. Most research works in this field employ machine learning methods and regression models in a supervised fashion, which implies the need for a large amount of labelled data to train such systems. This work proposes the use of autoencoder models, allowing the problem to be approached with semi-supervised learning techniques. Two different model training approaches are compared. The former i...