This dissertation presents the scanning probe microscopy studies of nanoscale ferroelectrics and magnetic materials, including ferroelectric PbZr1-xTixO3 and ferrimagnetic NiCo2O4 thin films and van der Waals (vdW) materials interfaced with PbZr0.2Ti0.8O3 and ferroelectric copolymer P(VDF-TrFE). Piezoresponse force microscopy (PFM) studies of epitaxial PbZr0.2Ti0.8O3 thin films on different correlated oxide electrodes reveal the competing effects of disorder pinning and thermal roughening on ferroelectric domain walls (DWs). We extract the disorder pinning energy and discuss possible scenarios for the correlated oxide electrodes in modifying the ferroelectric energy landscape for DW motion. Compared with the diffusive DW written in vdW ferr...