The massive and autonomous structural health monitoring (SHM) of bridges is a problem that is of growing interest due to its importance and topicality. However, a considerable amount of data must be elaborated and managed in such an application. This paper proposes a set of machine learning (ML) tools to detect anomalies in a bridge from vibrational measurements using the minimum amount of data. The proposed framework starts from the fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by a density-based time-domain tracking algorithm. The funda- mental frequencies extracted are then fed to one-class classification (OCC) algorithms that perform anomaly detection. Then, to reduce the amount of d...