Statistical analysis of data sets of high-dimensionality has met great interest over the past years, with great applications on disciplines such as medicine, neuroscience, pattern recognition, image analysis and many others. The vast number of available variables though, contrary to the limited sample size, often mask the cluster structure of the data. It is often that some variables do not help in distinguishing the different clusters in the data; patterns over the sampled observations are, thus, usually confined to a small subset of variables. We are therefore interested in identifying the variables that best discriminate the sample, simultaneously to recovering the actual cluster structure of the objects under study. With the Markov Chai...