Data fusion, within the data integration pipeline, addresses the problem of discovering the true values of a data item when multiple sources provide different values for it. An important contribution to the solution of the problem can be given by assessing the quality of the involved sources and relying more on the values coming from trusted sources. State-of-the-art data fusion systems define source trustworthiness on the basis of the accuracy of the provided values and on the dependence on other sources, and recently it has been also recognized that the trustworthiness of the same source may vary with the domain of interest. In this paper we propose STORM, a novel domain-aware algorithm for data fusion designed for the multi-truth case, t...