Shape morphing materials, especially those fabricated by 4D printing, are gaining much attention due to their versatility of actuation and capability of being programmed in advance. These materials become particularly interesting for biomedical applications where implant materials could be remotely actuated, exerting a force on the surrounding tissues and cells. However, applications in this field have been restricted due to the biocompatibility of the materials and the character of the required stimuli, generally not compatible with physiological environments. Magnetic nanoparticles (MNPs) represent a great opportunity to this end; however, the actuation results in a uniform movement toward the magnet that requires anchoring of the object....