Current testing models for predicting drug-induced liver injury are inadequate, as they basically under-report human health risks. We present here an approach towards developing pathways based on hepatotoxicity-associated gene groups derived from two types of publicly accessible hepatotoxicity databases, in order to develop drug-induced liver injury biomarker profiles. One human liver omics-based and four text-mining-based databases were explored for hepatotoxicity-associated gene lists. Over-representation analysis of these gene lists with a hepatotoxicant-exposed primary human hepatocytes data set showed that human liver omics gene lists performed better than text-mining gene lists and the results of the latter differed strongly between d...