Im ersten Teil der vorliegenden Dissertation definiere und untersuche ich die Kategorie der uniform rigiden Räume über einem vollständig diskret bewerteten Körper. Uniform rigide Räume sind nicht-archimedische analytische Räume. Sie erlauben es, die generische Faser eines formellen Schemas formell endlichen Typs als ein quasi-kompaktes Objekt zu betrachten, welches mit einer Strukturgarbe von beschränkten Funktionen versehen ist. Im zweiten Teil meiner Arbeit studiere ich formelle Néron-Modelle uniform rigider Räume, wobei ich formelle Schemata formell endlichen Typs zugrunde lege. Unter Zuhilfenahme von Kompaktifizierungen uniform rigider Räume zeige ich, dass formelle Néron-Modelle rigider Räume in vielen Fällen formelle Néron-Modellen zu...
The rigidity problem for uniform Roe algebras was recently positively solved. Before its solution wa...
We prove a generic smoothness result in rigid analytic geometry over a characteristic zero nonarchim...
This thesis is an examination of infinitesimal rigidity in generic structures using linear algebra ...
We introduce a new category of non-archimedean analytic spaces over a complete discretely valued fie...
Let $R$ be a discrete valuation ring with fraction field $K$. Let $X$ be a flat $R$-scheme of finite...
29 pages. Supersedes previous preprint "Effective model of a finite group action"Let $R$ be a discre...
Given a relative faithfully flat pointed scheme over the spectrum of a discrete valuation ring X → S...
We show that if $X$ and $Y$ are uniformly locally finite metric spaces whose uniform Roe algebras, $...
Uniformly finite homology was introduced by Block and Weinberger to study large-scale structures of ...
It is known that in algebraic geometry the N\ue9ron model (if it exists) of a smooth group scheme G ...
An abelian variety Z over a complete valued field k, which has a bad reduction, can be uniformized i...
Dans cette thèse, on aborde plusieurs questions autour des modèles de Néron de variétés abéliennes s...
We show that there is a generic structure in a finite language such that the theory is strictly stab...
A countable first-Order structure is called homogneous when each isomorphism between twofinitely gen...
Given a complete non-archimedean valued field K, we discuss a relative trace map attached to any fi...
The rigidity problem for uniform Roe algebras was recently positively solved. Before its solution wa...
We prove a generic smoothness result in rigid analytic geometry over a characteristic zero nonarchim...
This thesis is an examination of infinitesimal rigidity in generic structures using linear algebra ...
We introduce a new category of non-archimedean analytic spaces over a complete discretely valued fie...
Let $R$ be a discrete valuation ring with fraction field $K$. Let $X$ be a flat $R$-scheme of finite...
29 pages. Supersedes previous preprint "Effective model of a finite group action"Let $R$ be a discre...
Given a relative faithfully flat pointed scheme over the spectrum of a discrete valuation ring X → S...
We show that if $X$ and $Y$ are uniformly locally finite metric spaces whose uniform Roe algebras, $...
Uniformly finite homology was introduced by Block and Weinberger to study large-scale structures of ...
It is known that in algebraic geometry the N\ue9ron model (if it exists) of a smooth group scheme G ...
An abelian variety Z over a complete valued field k, which has a bad reduction, can be uniformized i...
Dans cette thèse, on aborde plusieurs questions autour des modèles de Néron de variétés abéliennes s...
We show that there is a generic structure in a finite language such that the theory is strictly stab...
A countable first-Order structure is called homogneous when each isomorphism between twofinitely gen...
Given a complete non-archimedean valued field K, we discuss a relative trace map attached to any fi...
The rigidity problem for uniform Roe algebras was recently positively solved. Before its solution wa...
We prove a generic smoothness result in rigid analytic geometry over a characteristic zero nonarchim...
This thesis is an examination of infinitesimal rigidity in generic structures using linear algebra ...