It is known that in algebraic geometry the N\ue9ron model (if it exists) of a smooth group scheme G over a local field K can be recovered using the Weil restriction functor from the N\ue9ron model of the extension of G to a finite field extension of K. We extends the classical results to the context of formal Neron models of rigid group schemes
Dans cette thèse, on aborde plusieurs questions autour des modèles de Néron de variétés abéliennes s...
We define and study the maximal crystalline subrepresentation functor, Crys(-), defined on p-adic Ga...
We give a description of endomorphism rings of Weil restrictions of abelian varieties with respect t...
We study the interactions between Weil restriction for formal schemes and rigid varieties, Greenberg...
AbstractWe study the interactions between Weil restriction for formal schemes and rigid varieties, G...
Let S be a Dedekind scheme with field of functions K. We show that if X_K is a smooth connected prop...
Weil descent — or, as it is alternatively called — scalar restriction, is a well-known technique in ...
Presenting the first systematic treatment of the behavior of Néron models under ramified base change...
Abstract. — By the theory of Colmez and Fontaine, a de Rham representation of the Galois group of a ...
Given number fields L⊃K, smooth projective curves C defined over L and B defined over K, and a non-c...
We introduce a new category of non-archimedean analytic spaces over a complete discretely valued fie...
We study, using the language of log schemes, the problem of extending biextensions of smooth commuta...
La présente thèse s'inscrit dans le cadre de travaux sur la représentation de Weil. Elle consiste en...
Let F be a non-Archimedean local field with finite residue field. An irreducible smooth representati...
We show that the Jacobians of prestable curves over toroidal varieties always admit Neron models. Th...
Dans cette thèse, on aborde plusieurs questions autour des modèles de Néron de variétés abéliennes s...
We define and study the maximal crystalline subrepresentation functor, Crys(-), defined on p-adic Ga...
We give a description of endomorphism rings of Weil restrictions of abelian varieties with respect t...
We study the interactions between Weil restriction for formal schemes and rigid varieties, Greenberg...
AbstractWe study the interactions between Weil restriction for formal schemes and rigid varieties, G...
Let S be a Dedekind scheme with field of functions K. We show that if X_K is a smooth connected prop...
Weil descent — or, as it is alternatively called — scalar restriction, is a well-known technique in ...
Presenting the first systematic treatment of the behavior of Néron models under ramified base change...
Abstract. — By the theory of Colmez and Fontaine, a de Rham representation of the Galois group of a ...
Given number fields L⊃K, smooth projective curves C defined over L and B defined over K, and a non-c...
We introduce a new category of non-archimedean analytic spaces over a complete discretely valued fie...
We study, using the language of log schemes, the problem of extending biextensions of smooth commuta...
La présente thèse s'inscrit dans le cadre de travaux sur la représentation de Weil. Elle consiste en...
Let F be a non-Archimedean local field with finite residue field. An irreducible smooth representati...
We show that the Jacobians of prestable curves over toroidal varieties always admit Neron models. Th...
Dans cette thèse, on aborde plusieurs questions autour des modèles de Néron de variétés abéliennes s...
We define and study the maximal crystalline subrepresentation functor, Crys(-), defined on p-adic Ga...
We give a description of endomorphism rings of Weil restrictions of abelian varieties with respect t...