For nearly half a century, the era of nanoscience was driven by the paradigm that the reduction in dimensions in nanomaterials would provide a deeper understanding of the fundamental building blocks at the atomic and molecular level, resulting in novel material properties, behavior, and utilization in nanotechnologies. Specifically, for magnetic materials, this triggered enormous research efforts in spintronics and magnetic nanostructures. However, about ten years ago, it was realized that the extension of accomplishments from nanoscience and nanotechnology into the third-dimension will not only open new opportunities in magnetic materials1,2 due to additional levels of complexity or phenomena that can only exist in 3D, such as chirality, b...