The use of smartphone-based location data to quantify behavior longitudinally and passively is rapidly gaining traction in neuropsychiatric research. However, a standardized and validated preprocessing framework for deriving behavioral phenotypes from smartphone-based location data is currently lacking. Here, we present a preprocessing framework consisting of methods that are validated in the context of geospatial data. This framework aims to generate context-enriched location data by identifying stationary, non-stationary, and recurrent stationary states in movement patterns. Subsequently, this context-enriched data is used to derive a series of behavioral phenotypes that are related to movement. By using smartphone-based location data col...