The viscoelasticity of a biofilm's EPS (extracellular polymeric substance) matrix conveys protection against mechanical challenges, but adaptive responses of biofilm inhabitants to produce EPS are not well known. Here, we compare the responses of a biofilm of an EPS-producing (ATCC 12600) and a non-EPS producing (5298) Staphylococcus aureus strain to fluid shear and mechanical challenge. Confocal laser scanning microscopy confirmed absence of calcofluor-white-stainable EPS in biofilms of S. aureus 5298. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with tribometry indicated that polysaccharide production per bacterium in the initial adhering layer was higher during growth at high shear than at low s...