RDF dataset quality assessment is currently performed primarily after data is published. However, there is neither a systematic way to incorporate its results into the dataset nor the assessment into the publishing workflow. Adjustments are manually -but rarely- applied. Nevertheless, the root of the violations which often derive from the mappings that specify how the RDF dataset will be generated, is not identified. We suggest an incremental, iterative and uniform validation workflow for RDF datasets stemming originally from (semi-) structured data (e.g., CSV, XML, JSON). In this work, we focus on assessing and improving their mappings. We incorporate (i) a test-driven approach for assessing the mappings instead of the RDF dataset itself, ...