The grand piano action aims at propelling the hammer up to the strings. This mechanism provides the pianist with a high-controllability of the time of impact of the hammer with the strings and the hammer's velocity at the impact. This controllability is believed to be due to the dynamic behaviour of the piano action. The present thesis proposes a simulation method of a complete model of the mechanism, which opens doors to improvements of the haptic rendering of digital keyboards. The sound following the impact of the hammer on the strings is not analysed. In the last fifteen years, various models of the piano action including several degrees of freedom, friction and intermittent contacts, have been proposed. Our approach differs from existi...