Interfacial inversion symmetry breaking gives rise to electronic properties that differ substantially from those of the bulk constituent materials. Here, we report on the realization of an artificial ferromagnetic quasi-two-dimensional electron gas (q2DEG) at the (111) interfaces between LaAlO3, EuTiO3, and SrTiO3 characterized by a reconstruction of the bulk quasioctahedral crystal field into a trigonal one. The q2DEG is created through a transfer of electrons to the EuTiO3 layers at the interface with LaAlO3, extending into the first layers of SrTiO3, as shown by an electron-energy-loss spectroscopy map of the titanium valence with atomic column resolution. Interestingly, polarized X-ray absorption spectroscopy shows that the Eu-4f and th...