International audienceWater-rich planets should be ubiquitous in the universe, and could represent a notable fraction of the sub-Neptune population. Among the detected exoplanets that have been characterized as sub-Neptunes, many are subject to important irradiation from their host star. As a consequence, hydrospheres of such planets are not in condensed phase, but are rather in supercritical state, with steam atmospheres on top. Such irradiated ocean planets (IOP) are good candidates to explain the distribution of masses and radii in the sub-Neptune category of exoplanets [1]. Here, we present the IOP model that computes the structure of water-rich planets that have high irradiation temperatures. The IOP model [2] combines two models in a ...