Multicollinearity negatively affects the efficiency of the maximum likelihood estimator (MLE) in both the linear and generalized linear models. The Kibria and Lukman estimator (KLE) was developed as an alternative to the MLE to handle multicollinearity for the linear regression model. In this study, we proposed the Logistic Kibria-Lukman estimator (LKLE) to handle multicollinearity for the logistic regression model. We theoretically established the superiority condition of this new estimator over the MLE, the logistic ridge estimator (LRE), the logistic Liu estimator (LLE), the logistic Liu-type estimator (LLTE) and the logistic two-parameter estimator (LTPE) using the mean squared error criteria. The theoretical conditions were validated u...
The parameter estimation method that based on the minimum residual sum of squares is unsatisfactory ...
In this paper, the (Formula presented.) class logistic estimator which combines the ridge logistic a...
Ridge estimator in linear regression model requires a ridge parameter, K, of which many have been pr...
The logistic regression model is used when the response variables are dichotomous. In the presence o...
Multicollinearity problem in logistic regression causes an inflation in the variance of the Maximum ...
Logistic regression is a widely used method to model categorical response data, and maximum likeliho...
Multicollinearity in logistic regression affects the variance of the maximum likelihood estimator ne...
The ridge regression model has been consistently demonstrated to be an attractive shrinkage method t...
The ridge regression-type (Hoerl and Kennard, 1970) and Liu-type (Liu, 1993) estimators are consiste...
This article is concerned with the performance of logistic ridge regression estimation technique in ...
Background: In the linear regression model, the ordinary least square (OLS) estimator performance dr...
TEZ11549Tez (Doktora) -- Çukurova Üniversitesi, Adana, 2016.Kaynakça (s. 91-97) var.x, 99 s. : res. ...
Neste trabalho estudamos os efeitos da multicolinearidade em modelos de regressão logística e aprese...
Neste trabalho estudamos os efeitos da multicolinearidade em modelos de regressão logística e aprese...
Neste trabalho estudamos os efeitos da multicolinearidade em modelos de regressão logística e aprese...
The parameter estimation method that based on the minimum residual sum of squares is unsatisfactory ...
In this paper, the (Formula presented.) class logistic estimator which combines the ridge logistic a...
Ridge estimator in linear regression model requires a ridge parameter, K, of which many have been pr...
The logistic regression model is used when the response variables are dichotomous. In the presence o...
Multicollinearity problem in logistic regression causes an inflation in the variance of the Maximum ...
Logistic regression is a widely used method to model categorical response data, and maximum likeliho...
Multicollinearity in logistic regression affects the variance of the maximum likelihood estimator ne...
The ridge regression model has been consistently demonstrated to be an attractive shrinkage method t...
The ridge regression-type (Hoerl and Kennard, 1970) and Liu-type (Liu, 1993) estimators are consiste...
This article is concerned with the performance of logistic ridge regression estimation technique in ...
Background: In the linear regression model, the ordinary least square (OLS) estimator performance dr...
TEZ11549Tez (Doktora) -- Çukurova Üniversitesi, Adana, 2016.Kaynakça (s. 91-97) var.x, 99 s. : res. ...
Neste trabalho estudamos os efeitos da multicolinearidade em modelos de regressão logística e aprese...
Neste trabalho estudamos os efeitos da multicolinearidade em modelos de regressão logística e aprese...
Neste trabalho estudamos os efeitos da multicolinearidade em modelos de regressão logística e aprese...
The parameter estimation method that based on the minimum residual sum of squares is unsatisfactory ...
In this paper, the (Formula presented.) class logistic estimator which combines the ridge logistic a...
Ridge estimator in linear regression model requires a ridge parameter, K, of which many have been pr...