The pervasiveness of offensive content in social media has become an important reason for concern for online platforms. With the aim of improving online safety, a large number of studies applying computational models to identify such content have been published in the last few years, with promising results. The majority of these studies, however, deal with high-resource languages such as English due to the availability of datasets in these languages. Recent work has addressed offensive language identification from a low-resource perspective, exploring data augmentation strategies and trying to take advantage of existing multilingual pretrained models to cope with data scarcity in low-resource scenarios. In this work, we revisit the problem ...