Starting from the generalized exponential function $\exp_{\kappa}(x)=(\sqrt{1+\kappa^{2}x^{2}}+\kappa x)^{1/\kappa}$, with exp 0(x)=exp (x), proposed in reference [G. Kaniadakis, Physica A 296, 405 (2001)], the survival function P>(x)=exp κ(-βxα), where x∈R+, α,β>0, and $\kappa\in[0,1)$ , is considered in order to analyze the data on personal income distribution for Germany, Italy, and the United Kingdom. The above defined distribution is a continuous one-parameter deformation of the stretched exponential function P> 0(x)=exp (-βxα) to which reduces as κ approaches zero behaving in very different way in the x→0 and x→∞ regions. Its bulk is very close to the stretched exponential one, whereas its tail decays following the power-law P>(x)...